The professional mapping drone
4 reasons to choose the eBee

Map more, more accurately

The eBee can cover up to 12 km² (4.6 mi²) in a single automated flight, while flights over smaller areas, flown at lower altitudes, can acquire images with a ground sampling distance (GSD) of down to 1.5 cm (0.6 in) per pixel.

No flying skills required

The eBee is the easiest to use professional drone on the market, used by thousands of customers around the world. To launch it, just throw the eBee into the air! It then flies, captures images and lands itself. However you can always alter its flight plan or land manually if required.

Because safety matters

Thanks to its ultra-light construction the eBee weighs just 700 g (1.5 lb), vastly minimising its impact energy. It also features a safety-conscious rear-facing propeller and senseFly’s cutting-edge autopilot, which manages a wide range of intelligent failsafe behaviours.

Your complete solution

The eBee package contains all you need to start mapping: a high-res RGB camera, batteries, radio modem and eMotion, our highly acclaimed flight planning and control software. It even comes with a sturdy, carry-on sized case. Then just process and analyse the eBee’s images using professional image processing software, such as Pix4Dmapper.

“The eBee has given me the best ROI of any surveying tool I own.”

Prof. Tosa Ninkov PhD, Owner, GeoGIS Consultants, Serbia
Plan your flight

The eBee sets the standard for easy flight planning and management thanks to its acclaimed eMotion software.

Just choose or create your preferred background map. Then use this to define the region you want to map. Next, simply specify your desired ground resolution (down to 1.5 cm / 0.6 inches per pixel) and set your required image overlap.

The rest is automatic: eMotion automatically generates a full flight plan, based on GPS waypoints, calculates the eBee’s required altitude and displays its projected trajectory.

To ensure your mission’s success, eMotion even offers a confidence-building simulation mode. This virtual flight simulates wind strength and direction, allowing you to make any flight plan enhancements needed before launch.
With a fully integrated workflow, the eBee allows us to focus on making use of the data as opposed to worrying about flight operations and data processing. We have flown the eBee in all types of weather conditions and have been extraordinarily impressed with its reliability.

Jarlath O’Neil-Dunne, Director, University of Vermont Spatial Analysis Laboratory, U.S.A.
Fly

Nothing is easier to operate than the eBee. Just shake the drone three times to start its motor, then throw it into the air—no catapult or additional accessories required!

The eBee’s eMotion software displays the aircraft’s key flight parameters, its battery level and its image acquisition progress, in real time, while the artificial intelligence inside the eBee Ag’s autopilot continuously analyses onboard IMU and GPS data to control and optimise every aspect of the drone’s flight. This proprietary autopilot also manages a wide range of intelligent failsafe behaviours, improving safety and security still further.

Need to make an adjustment? Reprogram the drone’s flight plan and landing zone mid-flight. Or in the case of any issue, tell it to immediately hold its position, return home or land.
The eBee provides the best overall performance of any UAS system we’ve tried. It can fly at high altitude, behaves reliably in unstable wind conditions, and it doesn’t require any extra take-off and landing equipment.

Eric Romersa, Co-Founder, WSdata3D, Chile
Use eMotion’s Flight Data Manager to pre-process, geotag and organise your flight’s images. Then import these into your professional image processing software of choice, such as Pix4Dmapper Pro, to create a range of valuable outputs.

Orthomosaics

In just a few clicks, you can transform the eBee’s high-resolution aerial images into a georeferenced orthomosaic raster (also known as an orthophoto).

Format(s): GeoTIFF (.tif), KML tiles (png/kml)
Example usage: Background maps, 2D measurements, cadastre, urban/infrastructure/transport planning, forestry, marketing

“Our eBee projects have yielded phenomenal quality, accuracy and ROI—our costs were approximately 50% when compared to using manned aircraft and we cut our delivery times by more than half.”

Marc A. Cañas GISP, Vice President, J.L. Patterson & Associates, Inc., United States
Digital Surface Models (DSMs)

The DSM is an essential component of the orthomosaicing process. It displays a continuous surface, featuring the tops of objects and structures such as trees and buildings (inc. bare earth when nothing is obscuring it). Ground-based objects can also be removed to produce a digital terrain model (DTM).

Format(s): GeoTIFF (.tif)
Example usage: Flood plain analysis, sunlight/signal coverage assessment, GIS applications, spatial analysis

Point clouds

These comprise millions of individual points, each featuring X, Y, Z coordinates and an RGB value. Can also be classified for more specific analysis using classes such as ground, buildings and vegetation. A LiDAR-like output, except in the presence of ground-obscuring vegetation, point clouds are most often used for geometric and CAD-based work.

Format(s): las, laz, ply, ascii
Example usage: 3D line & surface area measurement, volumetric calculation (i.e. stockpiles)

Drone vs LiDAR point clouds: http://goo.gl/TIDASb

Other common outputs:
- INDEX MAP: GeoTIFF (.tif), shp
- 3D MESH WITH TEXTURE: Wavefront (obj)
- CONTOUR LINES: dxf, shp
- GOOGLE MAPS: KML tiles (png/kml)

Outputs compatible with:
- Esri ArcGIS
- QGIS
- Inpho
- Erdas Imagine
- RealWorks
- Maptek
- 3DReshaper
- Surpac
- Mapbox
- GlobalMapper
- Autodesk
- StereoCAD
- Google Maps
- MicroStation
- Quick Terrain
- Agisoft
- ccViewer
- & many more
Fully automatic
- Create your flight plan
- Hand-launch (no catapult required)
- Flies, acquires images & lands itself

Optimal range
- Up to 50 min flight time
- Maximum flight coverage of 12 km² (4.6 mi²)*

Green technology
- Low-noise brushless electric motor
- Rechargeable lithium-polymer battery
- Safe rear-facing propeller

The eBee is the heart of my operation, allowing me to offer clients an affordable and reliable service that wasn’t previously available in this part of the world. My drone has already logged 182 problem-free flights and has proved durable enough to handle the toughest African operating conditions.

Theo Wolmarans, Director, ICARUS AT Pty Ltd, S. Africa

* based on the following test conditions: target ground resolution of 30 cm (11.8 in) / pixel, no wind, moderate weather temp. (18°C/64.4°F), new fully charged battery, flight altitude of 1,000 m (3,280 ft) above ground level, take-off at approx. sea level, take-off point in centre of desired coverage area.
18.2 MP RGB camera
- Fully controlled by eBee’s autopilot
- Automatic image acquisition & geotagging
- Multiple additional camera options available (inc. thermal)

2.4 GHz radio link
- Communicates with eMotion via USB ground modem
- Approx. 3 km (1.86 mile) range

Onboard artificial intelligence
- Analyses data from inertial measurement unit & onboard GPS
- Optimises every aspect of eBee’s flight

Lightest in its class
- Ultra-light EPP foam body & wings
- 0.69 kg (1.52 lb) take-off weight
- Less kinetic energy than a kicked football
Cameras

senseFly S.O.D.A.
The senseFly S.O.D.A. is the first camera to be designed for professional drone photogrammetry. It captures amazingly sharp aerial RGB images, across a range of light conditions, allowing you to produce detailed, vivid orthomosaics and highly precise digital surface models.

Technical features

- **Resolution**: 20 MP
- **Ground resolution at 122 m (400 ft)**: 2.9 cm (1.1 in) / pixel
- **Sensor size**: 1-inch (2.54 cm)
- **Pixel pitch**: 2.33 μm
- **Image format**: JPEG or JPEG + DNG

Sequoia
Sequoia by Parrot is the smallest, lightest multispectral sensor ever released. It captures images across four defined, visible and non-visible spectral bands, plus RGB imagery, in just one flight. Sequoia is immediately compatible with the eBee courtesy of senseFly’s proprietary eBee Integration Kit.

Main body
- Four 1.2 MP spectral cameras
- Up to 1 fps
- One 16 MP RGB camera with rolling shutter
- 64 GB built-in storage
- 5 W (~12 W peak)
- 72 g (2.5 oz)

Sunshine sensor
- 4 spectral sensors with same filters as body
- GPS
- IMU & magnetometer
- SD card
- 1 W
- 35 g (1.2 oz)

optional in Turkey.
thermoMAP

thermoMAP is a thermal infrared camera, featuring an integrated shutter for in-flight radiometric calibration. It can capture thermal video and still images, allowing you to create thermal maps of a site (for example, to assess a mine’s water distribution or to check the functionality of photovoltaic panels).

Technical features

Resolution	640 x 512 pixels
Ground resolution	14 cm (5.5 in) / pixel
at 75 m (246 ft)	
Scene temperature	-40 °C to 160 °C (-40 °F to 320 °F)
Temperature resolution	0.1 °C (0.2 °F)
Temperature calibration	Automatic, in-flight
Output formats	TIFF images + MP4 video
Weight	Approx. 134 g (4.7 oz)
Operating altitude	75 - 150 m (246 - 492 ft)

S110 NIR / S110 RE

Like all eBee cameras, these customised 12 MP models have been adapted to be controlled by the drone’s autopilot. They acquire image data in the near infrared (NIR) and red edge bands respectively. Their exposure parameters can be set manually and their RAW files are fully supported by the eBee’s eMotion software.

Technical features

Resolution	12 MP
Ground resolution at	3.5 cm (1.4 in) / pixel
100 m (328 ft)	
Sensor size	7.44 x 5.58 mm
Pixel pitch	1.86 µm
Output formats	JPEG and/or RAW
At senseFly, we believe in using technology to make work safer and more efficient. Our proven drone solutions simplify the collection and analysis of geospatial data, allowing professionals in surveying, agriculture, engineering and humanitarian aid to make better decisions, faster.

senseFly was founded in 2009 and quickly became the leader in mapping drones. The company is a commercial drone subsidiary of Parrot Group. For more information, go to www.sensefly.com.

Where can you buy your eBee?
Visit www.sensefly.com/about/where-to-buy to locate your nearest distributor.
HARDWARE

- Wingspan: 96 cm (37.8 in)
- Weight (inc. supplied camera & battery): Approx. 0.69 kg (1.52 lb)
- Motor: Low-noise, brushless, electric
- Radio link range: 3 km nominal (up to 8 km)**
- Detachable wings: Yes
- Camera (supplied): senseFly S.O.D.A. (20MP)
- Cameras (optional): Sequoia, thermoMAP, S110 NIR/RE
- Accessories (optional): Radio tracker, backpack, camera protection kit

SOFTWARE

- Flight planning & control software (supplied): eMotion
- Image processing software (optional): Pix4Dmapper Pro

OPERATION

- Automatic 3D flight planning: Yes
- Cruise speed: 40-90 km/h (11-25 m/s or 25-56 mph)
- Wind resistance: Up to 45 km/h (12 m/s or 28 mph)
- Maximum flight time: 50 minutes
- Maximum coverage (single flight): 12 km² (4.6 mi²)**
- Automatic landing: Linear landing with ~ 5 m (16.4 ft) accuracy
- Multi-drone operation: Yes
- Ground control points (GCPs): Optional
- Oblique imagery: 0 to -50°

RESULTS

- Ground sampling distance (GSD): Down to 1.5 cm (0.6 in) / pixel***
- Absolute horizontal/vertical accuracy (w/GCPs): Down to 3 cm (1.2 in) / 5 cm (2 in)
- Absolute horizontal/vertical accuracy (no GCPs): 1-5 m (3.3-16.4 ft)

Package contents:

- eBee body (inc. all electronics & built-in autopilot)
- Pair of detachable wings
- WX still camera (inc. SD card, battery, USB cable & charger)
- 2.4 GHz USB radio modem for data link (inc. USB cable)
- Two lithium-polymer battery packs & charger
- Spare propeller
- Carry case with foam protection
- Remote control & accessories (for safety pilots)
- User manual
- eMotion software download key (accessible via my.senseFly at no extra cost)

*optional in Turkey.

** based on the following test conditions: target ground resolution of 30 cm (11.8 in) / pixel, no wind, moderate weather temp. (18 °C/64.4 °F), new fully charged battery, flight altitude of 1,000 m (3,280 ft) above ground level, take off at approx. sea level, take-off point in centre of desired coverage area.

*** depends upon environmental conditions (light, wind, surface type).